top of page

Development and Evaluation of ABI-171, a New Fluoro-Catechin Derivative, for the Treatment of Idiopathic Pulmonary Fibrosis.

Araldi GL, Hwang YW, Raghu G.

Int J Mol Sci. 2024 Nov 4;25(21):11827. doi: 10.3390/ijms252111827. PMID: 39519378; PMCID: PMC11546061.

Abstract: The persistent challenge of idiopathic pulmonary fibrosis (IPF), characterized by disease progression and high mortality, underscores the urgent need for innovative therapeutic strategies. We have developed a novel small molecule—catechin derivative ABI-171—selectively targeting dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) and proviral integration site for Moloney murine leukemia virus 1 (PIM1) kinases, crucial in the pathogenesis of fibrotic processes. We employed the Bleomycin-induced (intratracheal) mouse model of pulmonary fibrosis (PF) to evaluate the therapeutic efficacy of ABI-171. Mice with induced PF were treated QD with ABI-171, either prophylactically or therapeutically, using oral and intranasal routes. Pirfenidone (100 mg/kg, TID) and Epigallocatechin gallate (EGCG, 100 mg/kg, QD), a natural catechin currently in a Phase 1 clinical trial, were used as reference compounds. ABI-171, administered prophylactically, led to a significant reduction in hydroxyproline levels and fibrotic tissue formation compared to the control group. Treatment with ABI-171 improved body weight, indicating mitigation of disease-related weight loss. Additionally, ABI-171 demonstrated anti-inflammatory activity, reducing lymphocyte and neutrophil infiltration. In the therapeutic setting, ABI-171, administered 7 days post-induction, reduced mortality rates (p = 0.04) compared with the bleomycin and EGCG control groups. ABI-171 also ameliorated the severity of lung injuries assessed by improved Masson’s trichrome scores when administered both orally and intranasally. ABI-171 significantly decreases bleomycin-induced PF and improves survival in mice, showcasing promising therapeutic potential beyond current medications like pirfenidone and EGCG for patients with IPF. Based on these results, further studies with ABI-171 are ongoing in preclinical studies.

 

 

Development of Novel Fluorinated Polyphenols as Selective Inhibitors of DYRK1A/B Kinase for Treatment of Neuroinflammatory Diseases including Parkinson's Disease. 

Araldi, G. L., & Hwang, Y. W. (2023).

Pharmaceuticals (Basel, Switzerland), 16(3), 443. https://doi.org/10.3390/ph16030443

Abstract: Natural polyphenol derivatives such as those found in green tea have been known for a long time for their useful therapeutic activity. Starting from EGCG, we have discovered a new fluorinated polyphenol derivative (1c) characterized by improved inhibitory activity against DYRK1A/B enzymes and by considerably improved bioavailability and selectivity. DYRK1A is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome and Alzheimer's disease), oncology, and type 2 diabetes (pancreatic β-cell expansion). Systematic structure-activity relationship (SAR) on trans-GCG led to the discovery that the introduction of a fluoro atom in the D ring and methylation of the hydroxy group from para to the fluoro atom provide a molecule (1c) with more desirable drug-like properties. Owing to its good ADMET properties, compound 1c showed excellent activity in two in vivo models, namely the lipopolysaccharide (LPS)-induced inflammation model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model for Parkinson's disease.

​

 

Design, synthesis, and biological evaluation of polyphenol derivatives as DYRK1A inhibitors. The discovery of a potentially promising treatment for Multiple Sclerosis

Araldi, G. L., & Hwang, Y. W. (2022).

Bioorganic & medicinal chemistry letters, 64, 128675. https://doi.org/10.1016/j.bmcl.2022.128675

Abstract: Green tea and its natural components are known for their usefulness against a variety of diseases. In particular, the activity of main catechin Epigallocatechin gallate (EGCG) against Dual-specificity tyrosine-(Y)-phosphorylation Regulated Kinase-1A (DYRK1A) has been reported; here we are showing a structure-activity relationship (SAR) for EGCG against this molecular target. We have studied the influence of all four rings on the activity and the nature of its absolute geometry. This work has led to the identification of the more potent and stable trans fluoro-catechin derivative 1f (IC50 = 35 nM). This molecule together with a novel delivery method showed good efficacy in vivo when tested in a validated model of multiple sclerosis (EAE)

 

 

bottom of page